Assessment of Emerging Scientific and Technological Principles: Current Applications and Future Prospects

Executive Summary

This report provides a comprehensive assessment of various scientific and technological principles, examining their current applications and future prospects across diverse domains. The analysis categorizes these principles into Quantum Information, Physics & Cosmology, Artificial Intelligence, and Cross-Cutting Themes, highlighting the pervasive and transformative impact of Artificial Intelligence (AI) across the scientific landscape.

The principles discussed range from deeply theoretical concepts, such as quantum signature schemes and the statistical mechanics of spacetime, which push the boundaries of fundamental understanding, to highly applied engineering principles, such as on-device small language models and AI agent orchestration, which drive immediate technological utility. A significant overarching trend is AI's role in enhancing efficiency, accuracy, and creativity in scientific inquiry, addressing challenges posed by big data and computational bottlenecks. The increasing reliance on computational methods, particularly AI, is accelerating scientific discovery and technological capabilities.

For applied Al/Machine Learning principles, the trajectory indicates very high chances of continued integration and widespread adoption across industry and research workflows. For fundamental physics principles, their primary utility lies in driving theoretical understanding and guiding future experimental designs, with profound long-term potential rather than immediate practical applications. The convergence of Al with traditional scientific methodologies is poised to accelerate the pace of discovery across all domains, while a proactive emphasis on ethical and responsible Al development remains paramount for ensuring these advancements benefit humanity.

The following table summarizes the key principles, their current status, and future outlook:

Table 1: Summary of Key Principles, Current Status, and Future Outlook

Principle Name	Primary	Core Concept	Current Usage	Future	Key Source
-	Domain	·	Status	Prospects	Citations
Quantum	Quantum	Signing	Primarily	Long-term	
Signature	Information	quantum states	theoretical	potential for	
Schemes		via	research;	secure	
(SDKP)		signcryption,	defines	quantum	
		constrained by	boundaries of	communication	
		no-cloning	quantum	where	
		theorem.	cryptography.	non-repudiation	
				is not critical.	
Quantum	Quantum	Frameworks for	Foundational	Essential for	
Coherence and	Information	causal	research in	advancing	
Causality		inference in	quantum	quantum	
		quantum	information	computing and	

Principle Name		Core Concept		Future	Key Source
	Domain			Prospects	Citations
		settings,	science;	fundamental	
		distinguishing	experimental	physics,	
		from classical.	demonstrations	potential for	
			-	quantum	
				gravity.	
Equation of	Computational	Using neural	Active and	High potential	
State (EOS)	Physics	networks to	growing area of	for widespread	
Modeling with		predict material	research in	adoption,	
Al		properties	computational	accelerating	
		(pressure,	physics.	scientific	
		energy) from		discovery and	
		first-principles		engineering	
		data.		design.	
	Cosmology &	Modeling dark	Fundamental to		
	Astrophysics			refinement for	
Principle (Dark				understanding	
Matter)		Ρ		galaxy	
		on gravitational		formation;	
		effects and		active search	
		NFW profiles.		for particle	
				nature with	
				AI/ML.	
Entropy of	Theoretical	Unifying	Cutting-edge	Long-term	
1 .	Physics	statistical		vision for	
Networks		physics and	physics	unified theory	
		_	research;	of physics; far	
		1	, ,	from	
		•	speculative.	experimental	
		from		verification.	
		entropy-driven			
		transformations			
Deuts Francis	0	N. a. ta = i = · · ·	0.0000000000000000000000000000000000000		
, ,	Cosmology	Mysterious	Cornerstone of		
and Cosmic			standard LCDM		
Expansion		accelerating		shift if dynamic	
		universe	research into	nature	
			its evolving nature.	confirmed;	
			nature.	resolves major	
		constant vs.		cosmological puzzles.	
		dynamic dark		puzzies. I	
"Eather Times"	Evolutiones:	energy.	Active recent	Cianificant	
	Evolutionary	_	Active research	. •	
1,	1 0,	for male		implications for	
Anthropology)	pology	•	anthropology;	understanding	
		challenging	recognized for	human social	

Principle Name	Primary	Core Concept	Current Usage	Future	Key Source
•	Domain		Status	Prospects	Citations
		traditional	changing	behavior and	
		evolutionary	research	gender roles;	
		views.	questions.	high academic	
				use.	
Al Reasoning	Artificial	Hybrid linear	Active	High potential	
Models	Intelligence	RNN models	development	for scaling	
(Mamba		for efficient,	and application;	context length	
Architecture)		scalable Al with	outperforms	and speedups	
		enhanced	previous	in AI, crucial for	
		reasoning.	models in	capable AI.	
			efficiency.		
On-Device	Artificial	Hardware-awar	Active	Crucial for	
Small	Intelligence	e architectural	development of	widespread Al	
Language		search <i>before</i>	practical,	adoption on	
Models		pretraining for	efficient Al	personal	
(QCC/PhoneL		efficient	models for	devices; likely	
M)		on-device AI.	mobile/edge	to become	
,			devices.	standard for	
				constrained	
				deployments.	
Al System	Artificial	Tools (SDKs,	Widespread	Exceptionally	
	Intelligence	agents,	and rapidly	high adoption,	
Application		•	expanding	driving	
		· · · · · · · · · · · · · · · · · · ·	across	practical,	
		Al into	industries.	scalable, and	
		enterprise and		democratized	
		specialized		Al applications.	
		systems.			
Al as a Core	Cross-Cutting	Al transforming	Widespread	Indispensable	
Methodology in		scientific	adoption	tool for	
Science		inquiry by	across STEM	accelerating	
			fields;	discovery;	
		efficiency,	institutional	emergence of	
		accuracy, and	integration	Al as a	
		creativity.	(NSF	scientific	
			institutes).	collaborator.	
Ethical and	Cross-Cutting	Developing and	Active	Imperative for	
Societal	_	adhering to	development of	sustainable and	
Principles for Al		ethical	frameworks	beneficial Al	
in Science		guidelines for	and initiatives	development;	
		responsible Al	(NSF, NAIRR,	crucial for	
		development	EOS).	public trust and	
		and		equitable	
		deployment.		access.	

Introduction: Defining the "Principles" Under Review

This report undertakes a comprehensive examination of various scientific and technological "principles" identified from a diverse body of research. In this context, "principles" are interpreted broadly to encompass fundamental scientific theories, core methodologies, innovative design philosophies, and significant technological concepts that are either currently in use or hold substantial promise for future application. The objective is to provide a detailed, evidence-based analysis of their current state of application and their potential for broader adoption and impact. Navigating the provided research material necessitates careful disambiguation, as several terms and names appear with overlapping or homonymous meanings. For instance, the query explicitly links "Donald Paul Smith arXiv" to "SDKP principles" and "EOS principles". These specific references will be the primary focus for the principles directly associated with this academic profile within the domains of quantum information and AI model architectures. Other mentions of "Donald Smith" or "Paul Smith" in different contexts, such as in observational astrophysics or business AI system integration , will be noted for their contributions to broader trends, particularly in the application of AI/Machine Learning in physics and enterprise, but will not be directly attributed as the originators of the queried principles unless explicitly stated in the source

Similarly, acronyms require precise contextual interpretation. "SDKP" primarily refers to **Quantum Signature Schemes** in quantum cryptography. Distinctly, "AI SDKs" (Software Development Kits) for AI application development and the "Sustainable Development Knowledge Partnership" will be discussed under their respective relevant sections, acknowledging their separate contexts. "EOS" primarily denotes **Equation of State** in physics. Other uses, such as "AI Model Architectures / Efficiency Optimization" (Mamba/M1 from), "Ethical AI Frameworks" (Equal Opportunity Schools from), and "Network Infrastructure for AI" (Arista EOS from), will be addressed under their specific domains. Lastly, "QCC" primarily refers to **Quantum Circuit Compilers** and **On-Device Small Language Models** (PhoneLM from). Other applications, such as "AI for Regulatory Compliance" (QCC Reports from) and "Hardware-Software Integration for AI/IoT" (Qualcomm QCC IDE from), will be treated as distinct principles.

This report is structured into sections corresponding to key scientific and technological domains, providing a clear roadmap for understanding the current status and future trajectory of these diverse principles.

I. Principles in Quantum Information and Cryptography

1.1. Quantum Signature Schemes (SDKP)

The principle of Quantum Signature Schemes, often termed "quantum signcryption," delves into the theoretical framework for authenticating quantum states. This concept fundamentally diverges from classical signature methods due to the inherent constraints of quantum mechanics. A core aspect is that signing a quantum message necessitates its transformation, a direct consequence of the no-cloning theorem, which prohibits the creation of identical copies of an arbitrary unknown quantum state. In practice, this involves a sender applying a signcryption function using their private key and the recipient's public key, followed by a verified decryption

by the intended recipient.

Currently, the application of these principles remains predominantly within the realm of theoretical research. Fundamental theorems in quantum information theory delineate the strict boundaries of what is achievable. For instance, if a quantum signature scheme is required to be correct for any two-outcome measurement, it can, in fact, only sign classical information. Furthermore, such schemes are at most one-time secure under these conditions. A significant limitation identified is the impossibility of achieving non-repudiation in quantum signcryption; releasing the receiver's secret key would render the scheme useless, thereby precluding the ability to definitively prove the sender's origin of a message to a third party. These findings indicate that the principles are not merely abstract ideas but are actively used to define the very limits of what is possible in quantum cryptography, guiding researchers toward viable pathways within these constraints.

Despite these theoretical limitations, the concept of quantum signcryption offers a compelling positive result: it is indeed possible to sign quantum states, provided they are simultaneously encrypted with the public key of the intended recipient. This suggests a promising avenue for highly secure quantum communication in scenarios where the stringent requirement of non-repudiation, as understood classically, might be relaxed or addressed through alternative means. Future developments in this area will undoubtedly require continued theoretical work to explore these boundaries and devise practical protocols that embrace the unique properties of quantum mechanics.

The fundamental constraint imposed by the no-cloning theorem directly dictates that quantum signature schemes cannot simply mimic classical functionalities, such as providing additional information alongside the message or ensuring non-repudiation. This is not merely a technical hurdle to overcome; rather, it is a foundational characteristic that inherently shapes the principles of quantum signature design. This implies that future advancements in quantum cryptography will not involve a direct translation of classical functionalities into a quantum setting. Instead, they will necessitate the development of entirely new design paradigms that leverage, rather than attempt to circumvent, the fundamental realities of quantum mechanics. The explicit identification that "only classical signature schemes exist" under certain conditions and that quantum signcryption "cannot provide non-repudiation" might initially appear to be a conceptual dead end. However, the same research then pivots to present a "positive result," demonstrating that quantum signcryption is achievable under specific, albeit constrained, conditions. This recurring pattern in quantum information theory—where the identification of theoretical impossibilities serves as a crucial step in defining the scope for novel, quantum-specific solutions—is noteworthy. This suggests a guiding principle where understanding fundamental limits is not a deterrent but a vital prerequisite for innovation. The likelihood of these principles being utilized in quantum cryptography is high, but their application will be uniquely quantum, tailored to its intrinsic properties, rather than a mere emulation of classical methods.

1.2. Quantum Coherence and Causality

The study of quantum coherence and causality involves establishing frameworks, frequently based on process theories, to investigate causal inference within quantum systems. This field meticulously differentiates quantum causal models from their classical counterparts, aiming to identify interventional quantities within quantum networks, even when unobserved confounding systems are present. A significant challenge in this domain arises from the nature of quantum measurement itself: any attempt to extract information from a quantum system inherently

causes a disturbance, which can be interpreted as a form of intervention. Furthermore, research in this area explores complex phenomena such as "quantum-coherent mixtures of causal relations," where the traditional cause-effect mechanisms and common cause scenarios can exist in a coherent superposition.

Currently, this area of study is primarily focused on foundational research within quantum information science. The developed frameworks offer quantum analogues to well-established classical causal criteria, such as the "back-door" and "front-door" criteria. Experimental demonstrations of these nonclassical causal relations have been successfully realized, notably in quantum optics experiments. This research is considered critical for deepening our understanding of the intricate interplay between causality and quantum theory, a relationship that lies at the heart of profound foundational puzzles, including Bell's theorem and the ongoing quest for a theory of quantum gravity.

Looking ahead, these principles are poised to be essential for the advancement of quantum computing and for unraveling fundamental quantum phenomena. They hold considerable promise for extensive applications in experiments that exhibit quantum effects, including the detection of non-Markovianity in quantum information processing and the complete characterization of quantum processes even under conditions of limited interactions. The ability to estimate process matrices based on assumed abstract causal structures and restricted probing represents a substantial stride toward practical quantum diagnostics and control. The inherent difficulty in formulating quantum causal inference problems stems from the fact that it is impossible to extract any information from a quantum system without inducing a disturbance, which, in essence, constitutes a type of intervention. This highlights a profound distinction from classical systems, where observation is often presumed to be a passive act. This implies that in quantum systems, the very act of measurement is an active causal process, rather than a mere observation. This fundamental re-evaluation of observation as an active causal process fundamentally alters how causal reasoning is approached in quantum mechanics, necessitating the development of new mathematical and experimental tools that explicitly account for this intrinsic interaction.

The research explicitly articulates that "the interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity". This statement suggests that a comprehensive understanding of quantum causal relations extends beyond the immediate concerns of quantum information processing; it is integral to addressing the most profound questions in theoretical physics. This indicates that the principles of quantum coherence and causality are not merely academic curiosities but represent potential keys to developing a unified theory of quantum gravity. Their future utilization is intrinsically linked to the very trajectory of fundamental physics, as they offer a novel conceptual lens through which to explore the fundamental fabric of spacetime and quantum reality.

II. Principles in Physics and Cosmology

2.1. Equation of State (EOS) Modeling with Al

The principle of Equation of State (EOS) modeling with AI involves the innovative application of artificial intelligence, particularly neural network models, to predict EOS data. This data, which describes the pressure and energy of a material as a function of its temperature and mass density, is critically important for phenomena occurring in warm-dense matter (WDM) regimes.

Such regimes are highly relevant to applications like inertial confinement fusion. The AI models are trained using "first-principles" data, which is derived from computationally intensive methods such as density-functional theory molecular-dynamics (DFT-MD) and path integral Monte Carlo (PIMC). These traditional methods are considered the highest quality benchmarks for EOS data. Currently, this area represents an active and expanding field of research in computational physics. AI models, especially those that are "physics-enhanced" by incorporating outputs from average-atom calculations as features, have demonstrated considerable potential as accurate and efficient methods for computing EOS data. This represents a direct and impactful application of AI to accelerate scientific discovery in areas where traditional computational methods are prohibitively expensive or slow.

The future prospects for AI in EOS modeling are highly promising, with a strong likelihood of widespread adoption in fields that demand rapid and precise EOS data. AI offers a compelling pathway to interpolate EOS data with minimal physical constraints from the user, and modern machine learning practices can facilitate more robust error estimation. The broader trend of AI becoming an indispensable tool across scientific research, known for enhancing efficiency, accuracy, and creativity, strongly supports the continued and expanded integration of AI for EOS modeling.

Traditional "first-principles" methods, such as DFT-MD and PIMC, are renowned for their accuracy but are computationally very expensive. The development and application of Al models trained on this high-fidelity data to provide rapid and accurate EOS predictions illustrate a clear cause-and-effect relationship: the computational bottleneck inherent in first-principles methods creates a compelling need for AI to act as a powerful accelerator. This highlights a general principle in scientific computation: Al does not seek to replace fundamental physics, but rather serves as a potent surrogate model or interpolator. By making high-fidelity, but slow, first-principles data more accessible and usable on a larger scale for practical applications, Al significantly accelerates the pace of scientific discovery and engineering design. A further consideration arises from the difficulty in benchmarking EOS models against experimental data, primarily due to the scarcity of direct temperature measurements under WDM conditions. This situation has led to the reliance on "first-principles methods... as the highest quality benchmarks." The capability of AI to "run more accurate simulations and create synthetic data" from existing content offers a potential solution to this data scarcity. This suggests a future where AI not only processes existing data but also generates high-fidelity synthetic data, effectively expanding the "observational" dataset for complex physical phenomena. This could lead to a transformative shift in how scientific data is acquired and validated, moving towards a paradigm of Al-augmented data generation and simulation.

2.2. Scale-Density Kinematic Principle (Dark Matter & Galaxy Dynamics)

The Scale-Density Kinematic Principle pertains to the methodologies and inherent challenges in characterizing dark matter properties and modeling the mass distribution within galaxies. This involves the adoption of specific profiles, such as the generalized-NFW (Navarro, Frenk & White) profile, to describe dark matter halos. These profiles incorporate parameters like scale density, scale radius, and inner slope, which are crucial for understanding the gravitational influence of dark matter. The existence of dark matter itself is not directly observed but is inferred from its gravitational effects on visible matter, manifest in phenomena such as the anomalous rotation speeds of stars in galaxies and the observed dynamics of galaxy clusters.

This principle is fundamental to the ongoing work in observational astrophysics and cosmology. Astronomers routinely combine stellar and HI (neutral hydrogen) kinematics to deduce dark matter properties, although relying solely on stellar data can introduce considerable uncertainties. Gravitational lensing, the bending of light by massive objects, serves as a key observational tool for directly confirming the existence of dark matter and precisely mapping its distribution. The prevailing cosmological model, Lambda Cold Dark Matter (LCDM), which incorporates dark matter as a fundamental component, demonstrates a remarkable consistency with a broad spectrum of cosmological observations, including the cosmic microwave background, large-scale structure, and supernovae data.

Future prospects for this principle involve continuous refinement of dark matter distribution models, which are essential for a deeper understanding of galaxy formation and the universe's large-scale structure. While the observational evidence for dark matter is overwhelmingly strong, its precise nature—whether it consists of weakly interacting massive particles (WIMPs), axions, primordial black holes, or other candidates—remains a vibrant area of theoretical and experimental investigation. Increasingly, AI and Machine Learning techniques are being deployed to analyze vast cosmological datasets and complex simulations, addressing the computational challenges inherent in these studies.

The concept of dark matter initially arose from significant discrepancies between the observed gravitational effects in galaxies (e.g., their rotation curves) and galaxy clusters, and the amount of mass accounted for by visible matter alone. This historical development underscores a fundamental principle in physics: persistent, unexplained observational data often necessitates the postulation of new entities or modifications to existing physical laws. The principles underpinning the existence of dark matter are therefore not merely theoretical constructs; they are directly derived from, and continuously refined by, empirical observations. The ongoing global search for its particle nature is a direct consequence of this observational imperative, driving both experimental and theoretical physics.

An alternative explanation to dark matter, the Modified Newtonian Dynamics (MOND) theory, proposed that gravity operates differently on galactic scales than in planetary systems, thereby accounting for the observed rotational anomalies without invoking unseen mass. However, crucial observations, such as those of the Bullet Cluster—a system formed from the collision of two galaxy clusters—provided compelling counter-evidence. In this collision, the ordinary baryonic matter (hot gas) interacted and slowed down, but the majority of the mass, inferred to be dark matter, passed through itself like a ghost, leading to a clear spatial separation between the visible gas and the gravitational mass. This event serves as a powerful illustration of the scientific principle of falsifiability. While alternative theories are valuable for exploring the solution space, empirical observations that directly contradict a theory lead to its rejection or significant modification. The Bullet Cluster effectively acted as a critical experiment, solidifying dark matter as the leading explanation for the missing mass problem and guiding future research directions towards understanding its particle properties.

2.3. Entropy of Spacetime and Networks (Statistical Gravity)

This highly theoretical principle introduces a novel "horizontal theory" that seeks to unify statistical physics and general relativity. It posits that gravity itself may emerge from a statistical approach, fundamentally linked to the concept of entropy. One such proposed framework, a "discrete spacetime framework," suggests a radical re-conceptualization of time: time arises as discrete, entropy-driven transitions occurring within an intricate network of "Space Elementary Quanta (SEQs)". Within this framework, concepts like "Time-Entropy Mirroring" and

"Mass-Gravity Duality" are explored, suggesting deep, underlying connections between seemingly disparate physical phenomena.

Currently, these ideas are at the forefront of cutting-edge theoretical physics research. They are inherently speculative, aiming to provide a more sophisticated and unified description of spacetime, potentially introducing a new perspective on its statistical properties. The research explores fundamental connections between thermodynamics, quantum mechanics, and general relativity, seeking a coherent framework that can bridge these pillars of modern physics. The future prospects for these principles are profound, representing a long-term vision for a unified theory of physics. Such a theory could potentially resolve deep conceptual issues in cosmology and quantum gravity, offering solutions to problems that current models struggle with. However, it is important to note that these concepts are presently far from experimental verification or practical application. Their potential for "use" in a practical, technological sense is low in the near term, but their potential impact on fundamental scientific understanding is immense, guiding the intellectual frontier of theoretical physics for decades to come. The discrete spacetime framework's proposition that "Time arises as discrete, entropy-driven transitions within a network of Space Elementary Quanta (SEQs)" represents a radical departure from the conventional view of time as a fundamental, continuous parameter. This conceptualization directly links the arrow of time to the increase of entropy. This implies that if time is indeed an emergent property arising from entropy and network transformations, it could lead to entirely new mathematical and conceptual approaches to quantum gravity and the early universe. Such a shift might offer solutions to long-standing problems that continuous spacetime models have found intractable.

Furthermore, the theory's connection of gravity to statistical physics through entropy, a concept deeply rooted in information theory , is significant. The discrete spacetime model elaborates on this connection by calculating entropy using "multiplicative energy distributions across space transformation structure matrix". This suggests an underlying information-theoretic principle governing the universe's fundamental workings. This implies a profound shift towards viewing fundamental physics through an information-theoretic lens, where concepts like entropy and information flow might be considered as fundamental as energy and momentum. The potential for these principles to be utilized is tied to the success of such information-centric approaches in unifying disparate areas of physics, potentially leading to a deeper, more elegant understanding of reality.

2.4. Dark Energy and Cosmic Expansion

Dark energy stands as the enigmatic force responsible for the accelerating expansion of the universe, a phenomenon first observed through distant supernovae in 1998. This mysterious component is believed to be remarkably homogeneous, not particularly dense, and interacts solely through gravity, which makes its direct detection in laboratory experiments exceptionally challenging. The most widely accepted theoretical explanation for dark energy is the cosmological constant (Lambda), which posits it as an inherent and unchanging property of space itself.

Currently, dark energy, specifically in the form of the cosmological constant, is a foundational element of the standard Lambda-CDM (\(\Lambda\)CDM) model of cosmology. This model has achieved remarkable success in describing the universe's evolution and large-scale structure. Its existence is robustly supported by a convergence of multiple independent astronomical measurements, including observations of the cosmic microwave background (CMB), baryon acoustic oscillations, and gravitational lensing phenomena.

The future prospects for understanding dark energy are dynamic and potentially transformative. Recent findings from large-scale cosmological surveys, such as the Dark Energy Spectroscopic Instrument (DESI) and the Dark Energy Survey (DES), suggest that dark energy might not be constant but could be evolving over cosmic history. This challenges the long-held assumption of a static cosmological constant. This "dynamic dark energy" hypothesis holds the potential to resolve several significant cosmological puzzles, including the "Hubble tension"—a persistent discrepancy between measurements of the universe's expansion rate from the early versus the late universe. It could also address the vast discrepancy between quantum field theory's theoretical prediction for vacuum energy and the much smaller observed value of dark energy. Furthermore, novel theories propose that black holes might serve as a source of dark energy through a mechanism termed "cosmological coupling," where their mass increases as the universe expands. If these evolving or black-hole-linked dark energy principles are confirmed, potentially reaching the 5-sigma statistical confidence typically required for a scientific discovery , it would represent a profound shift in our understanding of the cosmos' ultimate fate. The "Hubble tension" and the significant disparity between the theoretical prediction of vacuum energy from quantum field theory and the observed value of dark energy represent critical observational anomalies within the otherwise highly successful ACDM model. These discrepancies are the primary impetus for new theoretical explorations, such as the concepts of dynamic dark energy or black holes as a source of this mysterious force. This illustrates a critical principle of scientific progress: persistent, unexplained observational discrepancies can compel a fundamental re-evaluation of long-held assumptions, often leading to paradigm shifts in understanding. The likelihood of these principles being actively explored and refined is very high, as they are central to resolving pressing cosmological puzzles. The hypothesis that black holes, which are macroscopic gravitational objects, could be a source of dark energy suggests a deep, previously unrecognized "cosmological coupling" between local gravitational phenomena and the global expansion of the universe. Moreover, the idea of dynamic dark energy offers a potential pathway to reconcile cosmological observations with quantum field theory's predictions for vacuum energy. This points to a principle of profound

gravitational phenomena and the global expansion of the universe. Moreover, the idea of dynamic dark energy offers a potential pathway to reconcile cosmological observations with quantum field theory's predictions for vacuum energy. This points to a principle of profound interconnectedness across vastly different scales—from the quantum vacuum to supermassive black holes and the entire universe's expansion. It implies that a complete understanding of cosmology may necessitate a unified framework that bridges quantum mechanics, general relativity, and the properties of individual cosmic objects. The future utilization of these principles is directly tied to the ongoing pursuit of a more complete and coherent physical theory of the universe.

2.5. "Father Time" (Evolutionary Anthropology of Nurturing)

The principle explored in Sarah Blaffer Hrdy's book "Father Time" challenges conventional evolutionary perspectives by asserting that male nurturing possesses a profound biological foundation, extending beyond mere cultural influence. Her extensive research traces the evolutionary origins of male nurturing across millions of years of human, primate, and mammalian development. A key finding is that men who experience prolonged, intimate contact with babies exhibit biological responses that are remarkably similar to those observed in mothers.

Currently, this principle is an active area of research within evolutionary anthropology and primatology. Hrdy's work has garnered significant recognition, including awards, and is widely regarded as pivotal for reshaping narratives about "nature" and for influencing the types of questions younger researchers are now asking within the field. Her synthesis of evolutionary

and historical perspectives is considered masterful, offering a nuanced and comprehensive view of the subject.

The future prospects for this principle are substantial, with significant implications for society and our understanding of the human species. It deepens the comprehension of human social behavior, family structures, and evolving gender roles. By promoting a more flexible and nuanced view of human biological potential, it moves beyond traditional gendered divisions of labor. The likelihood of these principles being utilized is high, not only in academic discourse and social science research but also potentially in shaping public understanding and policy related to parenting and gender dynamics.

Hrdy's central argument that male nurturing is "not only cultural, but profoundly biological" directly challenges a simplistic dichotomy between nature and nurture. This perspective demonstrates that cultural practices can, over evolutionary time, shape biological predispositions, and conversely, biological capacities can influence cultural developments. This highlights a complex interplay between biological mechanisms and the socio-cultural environments in which human traits are expressed and selected. Understanding human behavior, therefore, requires an integrated approach that considers both these interacting forces.

Furthermore, Hrdy's work is described as having changed "the questions younger cohorts of researchers think to ask" and is hailed as being "one of the most important thinkers in evolutionary biology since Darwin" for its critical re-examination of the historical Darwinian focus primarily on male competition. This underscores the transformative power of critical inquiry that re-evaluates long-held foundational assumptions within a scientific discipline. It demonstrates that significant advancements and a richer, more accurate understanding of complex phenomena like human evolution and social behavior can emerge from challenging established paradigms.

III. Principles in Artificial Intelligence and Machine Learning

3.1. Al Reasoning Models (Mamba Architecture)

This principle centers on the development of innovative hybrid linear Recurrent Neural Network (RNN) reasoning models, exemplified by the "M1" model built upon the Mamba architecture. These models are specifically designed to overcome the inherent limitations of traditional transformer-based models, which suffer from quadratic computational complexity and linear memory requirements, especially when extending context length. The Mamba-based models achieve their advanced capabilities by leveraging a distillation process from existing reasoning models and further enhancing their performance through reinforcement learning (RL) training. Currently, this area is characterized by active development and application within AI research. The M1 models have demonstrated superior performance compared to previous linear RNN models and have achieved performance parity with state-of-the-art transformer reasoning models, such as Deepseek R1, at a comparable scale. Crucially, they offer significant throughput speedups, reportedly up to 3x, when served using highly performant general-purpose inference engines. This performance indicates a strong and successful push towards developing more efficient and scalable AI architectures capable of complex reasoning. The future prospects for these models are highly promising, particularly for scaling context

length and achieving substantial speedups in AI applications. This is especially relevant for memory-bound decoding processes at large batch sizes and with long sequences, where the lower memory usage of hybrid models can translate into significant speed gains. Notably, this efficiency gain can, in turn, be converted into an improvement in reasoning accuracy. These principles are therefore crucial for the development of more capable and resource-efficient AI systems, especially those tasked with complex reasoning.

The Mamba architecture and the M1 model directly address the "quadratic computational complexity and linear memory requirements" of transformer models, leading to "memory-efficient inference" and a "3x speedup". This illustrates a clear cause-and-effect relationship: novel architectural principles, such as those underlying linear RNNs, can yield significant advancements in AI performance and efficiency. This highlights the principle that fundamental architectural innovations in AI models are critical for overcoming current limitations, such as context length and computational cost, thereby unlocking new capabilities. The likelihood of these principles being widely adopted is very high, as they are essential for the continued scaling and practical deployment of advanced AI.

The training process for the M1 model is sophisticated, involving "distilling knowledge, incorporating math and reasoning abilities through supervised fine-tuning (SFT), and finally, boosting performance using reinforcement learning (RL) training". This multi-stage, multi-paradigm training approach demonstrates a sophisticated principle for developing highly capable AI models. It suggests that achieving complex reasoning abilities in AI moves beyond merely scaling model parameters. Instead, it involves nuanced training methodologies that combine different learning paradigms—distillation for knowledge transfer, supervised fine-tuning for specific skills, and reinforcement learning for performance optimization. This indicates a maturation in AI development practices, focusing on strategic integration of diverse techniques.

3.2. On-Device Small Language Models (QCC/PhoneLM)

This principle proposes an innovative and effective strategy for constructing small language models (SLMs) specifically designed for on-device deployment. The core idea is to prioritize "searching for an resource-efficient architecture on a given hardware *before* pretraining". This fundamentally differentiates it from conventional SLM development pipelines, which typically relegate runtime optimizations to post-training stages. PhoneLM is a notable example of an SLM family developed by strictly adhering to this principle, demonstrating its optimization for smartphone deployment and efficient inference on Neural Processing Units (NPUs). Currently, this approach is actively being pursued in the development of practical, efficient Al models tailored for mobile and edge devices. PhoneLM exhibits commendable runtime performance and capability, with its detailed hyperparameters and training settings publicly documented. This development directly addresses the real-world constraints inherent in deploying sophisticated Al on consumer hardware, where computational resources and power consumption are limited.

The future prospects for this principle are critical for the widespread adoption of AI on personal devices. It promises to enable more capable and responsive on-device AI functionalities that can operate effectively without constant reliance on cloud connectivity. This principle of "hardware-specific, ahead-of-pretraining hyperparameter search" is highly likely to become a standard practice for AI deployments in resource-constrained environments, significantly increasing the probability of its widespread utilization.

The central tenet of this principle is to optimize Al architecture for specific hardware *before* the pretraining phase, rather than treating it as a subsequent optimization step. This implies that

hardware constraints are not merely implementation details but fundamental design considerations that must shape the AI model from its inception. This highlights a significant shift from a purely software-centric view of AI development to one that deeply integrates hardware considerations from the very beginning of the design process. This principle is vital for the democratization and ubiquitous deployment of AI, facilitating its transition from large data centers to personal devices and edge computing environments.

3.3. Al System Integration and Application Principles

This broad category encompasses a range of principles related to the effective integration and application of AI across various systems, spanning enterprise solutions and specialized domains.

Al SDKs (Software Development Kits): Open-source libraries, such as Vercel's Al SDK and SAP Cloud SDK for Al, provide essential tools for developers to build Al-powered products. These SDKs offer a "Unified Provider API" that allows developers to seamlessly switch between different Al model providers (e.g., OpenAl, Claude, Hugging Face) and manage complex tasks like stream parsing, multi-turn tool execution, and robust error handling.

Al Agents and Orchestration: Leading technology companies, exemplified by ServiceNow, are making a concerted effort to embed "Al agents ubiquitous across the ServiceNow platform and across its customers". This initiative includes offering thousands of pre-built Al agents and powerful development tools like Al Agent Studio (a low-code/no-code environment) and Al Agent Orchestrator, which is designed to connect and manage teams of Al agents working across diverse tasks and departments. A key aspect of this approach is the commitment to embracing various large language models (LLMs) from different providers, recognizing the dynamic landscape of Al efficacy and cost-benefit.

Al for Regulatory Compliance: In specialized fields, Al is being applied to enhance regulatory processes. QCC Reports, for instance, leverages Al-powered Optical Character Recognition (OCR) technology and advanced search algorithms to deliver Know Your Customer (KYC) solutions. This system efficiently processes and extracts information from scanned documents, images, and PDFs, supporting complex languages and ensuring uniform data formatting and analysis from diverse global regions.

Hardware-Software Integration for Al/IoT: For embedded systems and the Internet of Things (IoT), the Qualcomm QCC IDE for QCC730 provides an integrated development environment and the necessary SDK dependencies for developing applications on specific Qualcomm chips. This integration is crucial for bringing Al capabilities to resource-constrained edge devices, ensuring seamless hardware-software interaction.

The current utilization of these principles is widespread and expanding rapidly. Al SDKs are highly regarded by developers for facilitating rapid Al application development. Al agents are experiencing significant adoption, with industry analysts like IDC predicting that nearly 50% of organizations will be utilizing Al agents by 2025. Al is actively employed in critical areas such as regulatory compliance and for developing applications on specialized hardware platforms. The future prospects for these principles are exceptionally high, as they represent the practical, scalable, and democratized application of Al technology. The prevailing trend towards platform-agnostic Al development, low-code/no-code environments, and the widespread deployment of agentic Al points to a future where Al is deeply integrated into core business processes and ubiquitous in everyday devices.

Al SDKs, such as those from Vercel and SAP Cloud, abstract away the complexities of interacting with various Al models and providers by offering a "Unified Provider API". This

simplification of AI development makes it accessible to a much broader range of developers. This principle accelerates the adoption and innovation of AI by significantly lowering the barrier to entry for developers. It enables a shift in focus from managing underlying AI infrastructure to building creative and impactful AI-powered applications, which is expected to lead to a rapid proliferation of AI solutions across numerous industries.

The intense focus on "AI agents running across the ServiceNow platform," complemented by "pre-built AI agents" and "AI Agent Orchestrator", strongly suggests the emergence of a future where autonomous or semi-autonomous AI entities are capable of performing complex, multi-step tasks across an entire enterprise. The prediction by IDC that nearly 50% of organizations will be using AI agents by 2025 further emphasizes this trajectory. This points to an emerging principle of "agentic AI," where AI systems are designed to operate with greater independence, interact seamlessly with multiple systems, and orchestrate intricate workflows. This development could fundamentally transform business processes, shifting from human-driven tasks to AI-driven automation and decision support, thereby yielding significant productivity gains and fostering entirely new business models.

IV. Cross-Cutting Themes: Al's Transformative Impact on Science

4.1. Al as a Core Methodology in Scientific Research

Artificial Intelligence and Machine Learning are fundamentally reshaping the very nature and methodologies of scientific inquiry across a diverse array of fields. This transformation encompasses enhancing efficiency, accuracy, and creativity in various scientific tasks. For instance, AI excels at identifying intricate patterns and relationships within vast datasets, running more accurate simulations, and generating high-fidelity synthetic data. In cosmology, Al is being applied to complex data analysis challenges, such as gravitational lensing and the estimation of the Hubble constant, particularly in scenarios where traditional algorithms prove too slow for the scale of available data. Similarly, in computational physics, Al is proving invaluable for tackling complex problems like Equation of State (EOS) modeling. Currently, AI enjoys widespread adoption across numerous STEM fields, with notable concentrations in medicine, materials science, robotics, agriculture, genetics, and computer science. The establishment of dedicated institutions, such as the NSF-Simons Al Institute for Cosmic Origins, and collaborative consortia, like the European Consortium for Al in Fundamental Physics, signifies a deep institutional integration of AI into scientific research. Physicists, in particular, are actively utilizing and developing AI/ML tools, acknowledging their utility despite some prevailing hype surrounding the technology.

The future prospects for AI as a core methodology in scientific research are exceptionally strong, virtually ensuring its continued integration. AI is rapidly becoming an indispensable tool, promising breakthroughs in complex problem-solving and accelerating the pace of discovery. The ambitious concept of "Large Physics Models (LPMs)"—specialized, general-purpose AI systems designed for physics research, akin to ChatGPT—is currently being explored. The aim is for these LPMs to function as community-owned scientific tools, capable of assisting in various research tasks. While current state-of-the-art models still face challenges with research-level problems, AI-assisted theoretical physics research is anticipated to become a reality in the near future.

Scientists are increasingly confronted with "big-data challenges" originating from next-generation observing facilities, alongside problems where existing algorithms are "too slow to do it on large enough scales". Al/ML techniques are explicitly identified as instrumental in helping to "identify new patterns and relationships in large datasets" and to "run more accurate simulations". This highlights the principle that Al is becoming the de facto solution for overcoming the limitations imposed by sheer data volume and computational complexity in scientific research. It empowers scientists to extract meaningful insights from previously intractable datasets and to perform simulations that were once computationally impossible, thereby significantly accelerating the pace of scientific discovery.

The proposal for "Large Physics Models (LPMs) as specialized, general-purpose AI systems for physics research, functioning ultimately as ChatGPT-like tools owned and developed by the scientific community" signifies a profound evolution beyond AI merely serving as a tool. This suggests a transformative shift in the very principle of scientific research: AI is evolving from an analytical instrument to a potential "collaborator" or "assistant" in the scientific process. Such systems could become capable of assisting with hypothesis generation, complex problem-solving, and even potentially uncovering "unrealized truths". This redefines the human-AI partnership in science, promising an unprecedented acceleration in scientific advancement.

4.2. Ethical and Societal Principles for Al in Science

As AI becomes increasingly integrated into scientific endeavors, there is a growing and critical emphasis on developing and adhering to robust ethical and responsible AI principles. This includes a dedicated focus on ensuring AI systems are trustworthy and ethical, fostering responsible discovery and innovation, and actively addressing crucial concerns such as data privacy and the development of bias-free AI. Furthermore, there is a strong call for policies and practices that explicitly acknowledge the deep connections between science and society, underscoring the necessity for equitable access to AI's benefits and the paramount importance of maintaining public trust in scientific research.

Currently, the development of frameworks and initiatives dedicated to ethical AI is an active area. The National Science Foundation's (NSF) National AI Research Institutes program, for example, explicitly includes focus areas on trustworthy and ethical AI, as well as human-AI interaction and collaboration. The National Artificial Intelligence Research Resource (NAIRR) pilot program, led by the NSF, is specifically designed to support "responsible discovery and innovation in AI" with a particular emphasis on safe, secure, and trustworthy AI. Beyond broad governmental initiatives, domain-specific frameworks are also being developed. The Equal Opportunity Schools (EOS) Responsible AI Framework, for instance, provides actionable guidance for building ethical AI solutions within the education sector, ensuring they are mission-aligned and safeguard student data privacy.

The future utilization of these principles is not merely probable but imperative for the sustainable and beneficial development of AI in science. As AI's capabilities and influence expand, so too does the necessity for robust ethical guidelines and governance structures to ensure that its profound benefits are directed towards humanity and the planet. This will undoubtedly involve ongoing, interdisciplinary dialogue and collaborative efforts among scientists, ethicists, policymakers, and the broader public to shape AI's trajectory responsibly.

The explicit and proactive focus on "trustworthy and ethical AI", "responsible discovery and innovation", and the development of "Responsible AI Frameworks" alongside technological advancements represents a significant evolution in the approach to emerging technologies. This

is a proactive stance towards governance, rather than a reactive one that addresses problems only after they manifest. This demonstrates a maturing principle in the development of powerful technologies: the recognition that ethical and societal considerations must be integrated from the very inception of development, not merely as an afterthought. This proactive approach is crucial for building public trust and ensuring that Al's transformative potential is harnessed for collective well-being.

The Royal Society report emphasizes that recommendations should "leverage open science principles to enable reliable AI-driven scientific contributions, while creating opportunities for resource sharing and collaboration" and call for "policies and practices that recognise the links between science and society, emphasising the need for ethical AI, equitable access to its benefits, and the importance of keeping public trust in scientific research". This highlights the principle that the long-term success and widespread adoption of AI in science are not solely dependent on its technical capabilities. Instead, they are deeply intertwined with societal acceptance and trust. Without ethical development, equitable access, and public confidence, the full potential of AI for scientific advancement may not be realized. This creates a crucial feedback loop where societal principles actively influence and shape the direction and progress of technological development.

Overall Assessment and Outlook

The comprehensive analysis of various scientific and technological principles reveals a dynamic landscape characterized by rapid advancements and profound interconnections.

Synthesis of Findings:

- The Pervasive Role of Al: A central finding is that Artificial Intelligence and Machine
 Learning are not merely auxiliary tools but have become foundational methodologies
 reshaping diverse scientific fields. From fundamental cosmology and quantum information
 to applied materials science and biology, Al addresses the challenges of data overload,
 overcomes computational bottlenecks, and enables entirely new forms of scientific inquiry.
- Fundamental vs. Applied Principles: The "principles" examined span a wide spectrum of maturity and application. Some, such as the statistical mechanics of spacetime or the theoretical limits of quantum signature schemes, represent deeply theoretical concepts that push the boundaries of fundamental understanding. Their impact is primarily on guiding future theoretical frameworks and experimental designs. Others, like the development of on-device small language models or Al agent orchestration, are highly applied engineering principles that drive immediate technological utility and commercial adoption.
- Interdisciplinary Convergence: A recurring theme is the increasing importance of
 interdisciplinary research. Many significant advancements are occurring at the
 intersection of traditionally separate disciplines, such as the application of AI in
 astrophysics or the use of statistical physics to explore the origins of gravity. This
 convergence highlights that complex scientific problems often require integrated
 approaches from multiple fields.
- Disambiguation as a Research Challenge: The prevalence of homonyms and overloaded acronyms within the research material underscores a practical challenge in navigating and synthesizing information in a rapidly expanding scientific and technological landscape. Accurate contextual interpretation is crucial for avoiding misattribution and ensuring clarity in scientific discourse.

Common Themes:

- Efficiency and Scalability: A primary driver for the adoption of AI across scientific and technological domains is its unparalleled ability to enhance computational efficiency and scalability. This is particularly evident in the processing of large datasets and the execution of complex simulations, where traditional methods often fall short.
- Augmentation of Human Capabilities: All is largely perceived and developed as a tool
 to augment human intelligence and capabilities. By automating mundane, repetitive, or
 computationally intensive tasks, All frees up scientists and professionals to dedicate their
 efforts to higher-level reasoning, creative problem-solving, and strategic decision-making.
- **Data-Driven Discovery:** The capacity of AI to identify subtle patterns and complex relationships within vast, intricate datasets is a key enabler for new scientific discoveries. This capability allows researchers to derive insights that would be impossible to discern through manual analysis or traditional statistical methods.
- Ethical and Responsible Development: There is a growing, proactive emphasis on developing AI responsibly. This includes significant efforts to address concerns related to bias, privacy, security, and trustworthiness, ensuring that AI systems are developed and deployed in a manner that aligns with societal values and promotes public good.

Outlook:

The future prospects for the principles discussed in this report vary depending on their domain and maturity. For applied Al/Machine Learning principles, the likelihood of their continued "use" is exceptionally high. They are actively being integrated into industrial processes, business workflows, and consumer technologies, indicating a clear path to widespread adoption and significant economic and societal impact.

For principles rooted in fundamental physics, their "use" is primarily in advancing theoretical understanding and guiding the design of future experiments and observational campaigns. While they may not yield immediate practical applications, their long-term potential for transformative breakthroughs in our understanding of the universe is profound. These principles are crucial for pushing the boundaries of human knowledge and addressing the most profound questions about reality.

The convergence of AI with traditional scientific methods is poised to accelerate the pace of discovery across all domains. Al's ability to process, analyze, and even generate data at scales previously unimaginable will empower scientists to tackle more complex problems and uncover new phenomena. This synergistic relationship promises to redefine the scientific method itself, fostering an era of unprecedented scientific advancement.

Conclusion

The analysis presented in this report underscores the transformative impact of Artificial Intelligence and the dynamic, evolving nature of scientific principles. From the theoretical frontiers of quantum information and cosmology to the practical applications of AI in industry and daily life, a common thread emerges: the relentless pursuit of deeper understanding and enhanced capabilities.

The "principles" examined herein, whether they define the fundamental limits of quantum communication, reveal the hidden components of the cosmos, or revolutionize how we design intelligent systems, are all actively shaping the trajectory of science and technology. The increasing reliance on AI as a core methodology is not merely an incremental improvement; it represents a paradigm shift, enabling scientists to overcome long-standing challenges related to

data volume, computational complexity, and the very nature of scientific inquiry. As these principles continue to evolve and converge, the scientific community faces both exciting prospects and ongoing challenges. The potential for AI to act as a scientific collaborator, to accelerate discovery, and to unlock previously inaccessible insights is immense. However, realizing this potential fully necessitates a continued, proactive commitment to ethical development, ensuring that these powerful technologies are harnessed responsibly for the collective well-being of humanity and the planet. The journey at the frontiers of science and technology remains vibrant and full of discovery.

Works cited

1. Can You Sign A Quantum State? - Cryptology ePrint Archive, https://eprint.iacr.org/2018/1164.pdf 2. arXiv:2504.10449v1 [cs.LG] 14 Apr 2025, https://arxiv.org/pdf/2504.10449 3. ServiceNow Launches Significant Al Agent Expansion, Reports Annual Growth - CRN,

https://www.crn.com/news/ai/2025/servicenow-launches-significant-ai-agent-expansion-reports-annual-growth 4. S. Paul Smith's articles on arXiv, https://arxiv.org/a/smith_s_3 5. Donald Smith - Physics Department - Guilford College, https://www.guilford.edu/profile/dsmith4 6. Faculty & Staff | University of Cincinnati - College of Arts and Sciences,

https://www.artsci.uc.edu/departments/physics/fac-staff.html 7. Al for executives: A new leadership imperative,

https://exec.mit.edu/s/blog-post/ai-for-executives-a-new-leadership-imperative-20YU100000IM2 46MAD 8. Donald Smith Publishes Two Articles | Guilford College,

https://www.guilford.edu/news/2021/11/donald-smith-publishes-two-articles 9. Donald SMITH | Northcentral University, San Diego | NCU | School of Psychology | Research profile - ResearchGate, https://www.researchgate.net/profile/Donald-Smith-18 10. Al SDK,

https://ai-sdk.dev/ 11. Getting Started | SAP Cloud SDK for AI,

https://sap.github.io/ai-sdk/docs/js/getting-started 12. Global Governance for Sustainable Development | The Frederick S. Pardee Center for the Study of the Longer-Range Future - Boston University,

https://www.bu.edu/pardee/research/global-governance-for-sustainable-development/ 13. Sustainable Development Knowledge Partnership | Department of Economic and Social Affairs, https://sdgs.un.org/partnerships/sustainable-development-knowledge-partnership 14.

Physics-enhanced neural networks for equation-of-state calculations - arXiv, https://arxiv.org/html/2305.06856v2.15. Responsible Al Framework Public Good Liu

https://arxiv.org/html/2305.06856v2 15. Responsible Al Framework Public Good | Intentional Futures,

https://intentionalfutures.com/work/responsible-ai-framework-public-good-intentional-futures 16. Arista Introduces Intelligent Innovations for AI Networking,

https://investors.arista.com/Communications/Press-Releases-and-Events/Press-Release-Detail/2025/Arista-Introduces-Intelligent-Innovations-for-AI-Networking/ 17. Optimized compiler for Distributed Quantum Computing - arXiv, https://arxiv.org/pdf/2112.14139 18. PhoneLM: an Efficient and Capable Small Language Model Familythrough Principled Pre-training - arXiv, https://arxiv.org/pdf/2411.05046 19. Advanced KYC Report Solutions - AI-Powered Data Access & Global Reach | QCC Reports, https://www.qcckyc.com/products-report 20. Set up QCC IDE environment for QCC730 - Qualcomm,

https://docs.qualcomm.com/bundle/publicresource/topics/80-Y8730-9/development_preparation. html 21. Identification of causal influences in quantum processes | Phys. Rev. A, https://link.aps.org/doi/10.1103/PhysRevA.109.042214 22. [1606.04523] Quantum-coherent

mixtures of causal relations - arXiv, https://arxiv.org/abs/1606.04523 23. Outstanding Cosmology Problems Needing Better Algorithms - Physics Stack Exchange,

https://physics.stackexchange.com/questions/847169/outstanding-cosmology-problems-needing-better-algorithms 24. Science in the age of AI - Royal Society,

https://royalsociety.org/-/media/policy/projects/science-in-the-age-of-ai/science-in-the-age-of-ai-r eport.pdf 25. Dark matter measurements combining stellar and H i kinematics - Oxford

Academic, https://academic.oup.com/mnras/article-pdf/528/3/5295/56678745/stae335.pdf 26.

Dark matter universe - PNAS, https://www.pnas.org/doi/10.1073/pnas.1516944112 27. Shining a Light on Dark Matter - NASA Science,

https://science.nasa.gov/mission/hubble/science/science-highlights/shining-a-light-on-dark-matt er/ 28. What could dark matter be? Five key theories | BBC Sky at Night Magazine,

https://www.skyatnightmagazine.com/space-science/what-could-dark-matter-be 29. Could the universe ever stop expanding? New theory proposes a cosmic 'off switch',

https://www.livescience.com/space/cosmology/could-the-universe-ever-stop-expanding-new-the ory-proposes-a-cosmic-off-switch 30. cerncourier.com,

https://cerncourier.com/a/dark-matter-evidence-theory-and-constraints/#:~:text=The%20evidence%20for%20dark%20matter,axions%20and%20primordial%20black%20holes. 31. Dark matter - Wikipedia, https://en.wikipedia.org/wiki/Dark_matter 32. DOE Explains...Dark Matter -

Department of Energy, https://www.energy.gov/science/doe-explainsdark-matter 33. CosmicAl Inaugural Conference – Cosmic Horizons: Al-Powered Insights into the Universe,

https://aiinstitutes.org/event/cosmic-horizons-ai-powered-insights-into-the-universe-conference/34. Cosmology and galaxy astrophysics with simulations and machine learning 2024,

https://www.simonsfoundation.org/event/cosmology-and-galaxy-astrophysics-with-simulations-a nd-machine-learning-2024/ 35. Is AI/ML taking over Physics? - Reddit,

https://www.reddit.com/r/Physics/comments/1fyz4nv/is_aiml_taking_over_physics/ 36.

Properties of Dark Matter and Detection Methods Buckminster - AWS,

https://terra-docs.s3.us-east-2.amazonaws.com/IJHSR/Articles/volume6-issue2/IJHSR_2024_6 2 58.pdf 37. Statistical Gravity and Entropy of Spacetime - MDPI,

https://www.mdpi.com/2571-905X/8/1/23 38. Time-Entropy Mirroring via Space Transformation and Mass-Gravity Duality via QCD-Higgs Synergy - Preprints.org,

https://www.preprints.org/manuscript/202505.0270/v1 39. Dark energy, explained - UChicago News - The University of Chicago, https://news.uchicago.edu/explainer/dark-energy-explained 40. New findings suggest dark energy may be changing over time - Astronomy Magazine, https://www.astronomy.com/science/dark-energy-may-be-changing-over-time/ 41. en.wikipedia.org,

https://en.wikipedia.org/wiki/Dark_energy#:~:text=Dark%20energy%20is%20thought%20to,be% 20detectable%20in%20laboratory%20experiments. 42. Dark energy - Wikipedia,

https://en.wikipedia.org/wiki/Dark_energy 43. Scientists find first evidence that black holes are the source of dark energy | Imperial News,

https://www.imperial.ac.uk/news/243114/scientists-find-first-evidence-that-black/ 44. Father Time: A Natural History of Men and Babies - Amazon.com,

https://www.amazon.com/Father-Time-Natural-History-Babies/dp/0691238774 45. Father Time - Citrona Farms, http://www.citrona.com/father-time-book-sarah-blaffer-hrdy 46. Large Physics Models and EuCAIF — AI as a New Scientific Tool - CERN Indico,

https://indico.cern.ch/event/1510125/ 47. [2502.15815] Theoretical Physics Benchmark (TPBench) -- a Dataset and Study of AI Reasoning Capabilities in Theoretical Physics - arXiv, https://arxiv.org/abs/2502.15815 48. Artificial Intelligence | NSF - National Science Foundation, https://www.nsf.gov/focus-areas/artificial-intelligence 49. National Artificial Intelligence Research

Resource Pilot | NSF, https://www.nsf.gov/focus-areas/artificial-intelligence/nairr